TAF S11

EXERCICE 1:

Ventes (en €)	2 000	8 000	16000	18 000	20 000	38 000
Primes (en €)	125	500	1 000	1125	1250	2375

8000 € ÷ 4 = 2000 € 500 € ÷ 4 = 125 €	$8000 € \times 2 = 16000 €$ $500 € \times 2 = 1000 €$	$2\ 000 \in \times 9 = 18\ 000 \in 125 \in \times 9 = 1\ 125 \in$
$2\ 000 \in \times 10 = 20\ 000 \in 125 \in \times 10 = 1\ 250 \in$	$18\ 000 \notin +\ 20\ 000 \notin =\ 38\ 000 \notin$ $1\ 125 \notin +\ 1\ 250 \notin =\ 2\ 375 \notin$	

EXERCICE 2:

Pour le triangle NOR :

$$OR = 10.5 - 2.5 \times 2 = 5.5 cm$$

La longueur du plus grand côté est: OR = 5,5 cm

Je calcule la somme des deux autres : ON + NR = 2.5 cm + 2.5 cm = 5 cm

On a : OR > ON + NR

Le plus grand côté est supérieur à la somme des deux autres, je ne peux pas construire le triangle NOR.

Pour le triangle SUD :

$$SU = SD = (10.5 cm - 2.5 cm) \div 2 = 8 cm \div 2 = 4 cm$$

La longueur du plus grand côté est: SU = 4 cm

Je calcule la somme des deux autres : SD + UD = 4cm + 2.5 cm = 6.5 cm

On a : SU < SD + UD

Le plus grand côté est inférieur à la somme des deux autres, je peux construire le triangle SUD.

EXERCICE 3:

1 et 2

Longueur de ruban nécessaire

- $= 50 cm \times 4 + 20 cm \times 2 + 35 cm \times 2 + 20 cm$
- = 330 cm

Il faut 330 cm de ruban.